

Xanthine Oxidase Activity Assay Kit

黄嘌呤氧化酶(XOD)活性检测试剂盒 分光法

产品编号	产品名称	规格
BL1759A	黄嘌呤氧化酶(XOD)活性检测试剂盒 分光法	48T

产品简介:

黄嘌呤氧化酶(XOD, EC 1.17.3.2)属需氧脱氢酶类,是活性氧主要来源之一,也是核苷酸代谢的关键酶之一。XOD主要分布于哺乳动物的肝脏等组织中,当肝功能受损时,XOD大量释放到血清中,对肝损害的诊断具有特异性的意义。

黄嘌呤氧化酶(XOD)催化黄嘌呤氧化生成尿酸和超氧阴离子自由基,接着与显色剂反应生成有色物质,通过检测有色物质的生成量多少即可计算得出 XOD 酶活性大小。

产品组成:

试剂名称	规格	保存条件	备注	
提取液	60mL×1 瓶	4℃保存		
试剂一	粉末×1 支	-20℃保存	用前甩几下使粉剂落入底部,再加 1.6mL 蒸馏水溶解备用。	
试剂二	40mL×1 支	4℃保存		
试剂三	粉末×5 支	4℃保存	临用前甩几下,使粉末落到底部,每支加0.1mL 试剂四振荡或超声溶解后,再加3.9mL 蒸馏水混匀使用(务必加0.1mL 试剂四溶解后再加水),一周内用完。	
试剂四	0.7mL×1 支	4℃保存		

使用方法:

一、样本准备

- 1. 组织样本:
- (a) 取约 0.1g 组织,加入 1mL 提取液,在 4℃ 或冰浴进行匀浆(或使用各类常见匀浆器);
- (b) 12000rpm, 4℃离心 10min, 取上清, 置冰上待测。
- 【注】根据研究需求,可按组织质量(g):提取液体积(mL)为1:10的比例进行提取。
- 2. 细胞/细菌样本:
- (a) 先收集细菌或细胞到离心管内, 离心后弃上清;
- (b) 取 5×10^6 个细菌或细胞加入 1mL 提取液,超声波破碎细菌或细胞(冰浴,功率 200W,超声 3s,间隔 10s,重复 30 次);
- (c) 12000rpm 4℃离心 10min,取上清,置冰上待测。
- 3. 液体样本:
 - 澄清的液体样本直接检测,若浑浊则离心后再取上清液检测。

二、样品测定

- 1. 可见分光光度计预热 30min 以上,调节波长至 450nm,蒸馏水调零。
- 2. 测定前将试剂一、二和三 25℃水浴 5min 以上。
- 3. 试剂三每次加样前务必混匀,保证试剂的均一性。
- 4. 在离心管中依次加入:

Note: For in vitro research use only, not for diagnostic or therapeutic use, This product is not a medical device. 注意:在体外研究使用,不用于诊断或治疗用途,本产品不是医疗装置。

试剂名称(μL)	测定管
样本	60
试剂一	30
试剂二	320
试剂三	320
• = • ≈ \n÷ \t. c+s → \. □	1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T

37℃避光孵育,立即于 450nm 读取吸光值 A1,30min 后读取 A2, ΔA=A2-A1。

【注】:若 ΔA 在零附近徘徊,可延长反应时间 T(如增至 60 min)或加大样本量 V1(如增加至 $100 \mu L$,则试剂二相应减少),则改变后的反应时间 T 和样本量 V1 需代入计算公式重新计算。

三、结果计算

1. 按样本鲜重计算:

酶活定义: 37℃下每克组织样本每分钟催化产生 1nmol 有色物质为一个酶活单位(U)。 XOD 活性(U/g 鲜重)=(\triangle A÷ε÷d×V2×10 9)÷(W×V1÷V)÷T=13.1× \triangle A÷W

2. 按样本蛋白浓度计算:

酶活定义: 37°C下每毫克蛋白样本每分钟催化产生 1nmol 有色物质为一个酶活单位(U)。 XOD 活性(U/mg prot)=($\triangle A \div \varepsilon \cdot d \times V2 \times 10^9$)÷(V1×Cpr)=13.1× $\triangle A \div C$ pr

3. 按细胞数量计算:

酶活定义:每 10^6 个细胞每分钟催化产生 1nmol 有色物质为一个酶活单位(U)。 XOD 活性(U/ 10^6 cell)=($\triangle A$ ÷ ϵ +d×V2× 10^9)÷(5×V1+V)= 13.1× $\triangle A$ +5

4. 按液体体积计算:

酶活定义: 37°C下每毫升样本每分钟催化产生 1nmol 有色物质为一个酶活单位(U)。 XOD 活性(U/mL)=($\triangle A$ ÷ ϵ ÷d×V2×109)÷V1×D=13.1× $\triangle A$

V---加入提取液体积, 1mL

V1---反应中样品体积, 0.06mL

d---光径, 1cm

V2---反应体系总体积,730μL=7.3×10-4L

T---反应时间, 30min

W---样本质量, g 5---细胞数量, 百万

ε---甲臜物质的摩尔消光系数, 3.1×10⁴ L/mol/cm

Cpr---样本蛋白质浓度, mg/mL

注意事项:

- 1. 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品。
- 2. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

有效期:

-20℃保存六个月。