

Urea Content Assay Kit

尿素/尿素氮(Urea)含量测定试剂盒(脲酶法) 微板法

产品编号	产品名称	规格
BL1484B	尿素/尿素氮(Urea)含量测定试剂盒(脲酶法) 微板法	96T

产品简介:

尿素(Urea)又称碳酰胺,旧称尿素氮(BUN),是哺乳动物和某些鱼类体内蛋白质代谢分解的主要含氮产物,也是目前含氮量最高的氮肥。

该试剂盒利用尿素在脲酶的作用下水解产生氨离子和二氧化碳, 氨离子在碱性介质中与酚显色剂生成蓝色物质, 该物质的生成量与尿素含量成正比。通过于 625nm 处检测该有色物质含量讲而得出尿素氮含量。

产品组成:

试剂名称	规格	保存要求	备注
试剂一	粉末×1 支	-20℃保存	临用前甩几下使粉体落入底部,再
			加 1.1mL 的去离子水溶解备用。
试剂二	液体 3mL×1 瓶	4℃保存	
试剂三 A	液体 1.5mL×2 支	4℃保存	临用前向一支试剂三 A 中加入
试剂三 B	液体 0.2mL×1 支	4℃保存	46μL 的试剂三 B,混匀备用。
			每支临用前加1mL去离子水溶解,
标准管	粉末×2 支	4℃保存	即浓度为6mg/mL的尿素,检测前再
			用去离子水稀释200倍(5:995)即
			成0.03mg/mL(0.5mmol/L)的尿素。

使用方法:

建议正式实验前,选取 2 个样本做预测定,了解实验样品情况,熟悉流程,避免样本和试剂浪费。

一、样本准备

- 1. 组织样本准备:
- (a) 称取约 0.1g 组织,加入 1mL 生理盐水,进行冰浴匀浆;
- (b) 12000rpm 4℃离心 10min 后取上清,置冰上待测。

【注】: 若增加样本量,可按照组织质量(g):生理盐水体积(mL)为 $1:5\sim10$ 的比例进行提取。

- 2. 细胞/细菌样本准备:
- (a) 先收集细菌或细胞到离心管内,离心后弃上清;
- (b) 取 5×10⁶ 个细菌或细胞加入 1mL 生理盐水,超声波破碎细菌或细胞(冰浴,功率 200W,超声 3s,间隔 10s,重复 30 次);
- (c) 12000rpm, 4℃离心 10min, 取上清, 置冰上待测。

【注】:若增加样本量,按照每 $0.5\sim1\times10^7$ 个细菌/细胞加入1mL生理盐水进行提取。

3. 液体样本准备: 液体样本:澄清的液体样本直接测定,若浑浊则离心后取上清检测。

二、样品测定

Note: For in vitro research use only, not for diagnostic or therapeutic use, This product is not a medical device. 注意:在体外研究使用,不用于诊断或治疗用途,本产品不是医疗装置。

- 1. 可见分光光度计预热 30min 以上,设置温度在 37℃,调节波长至 625nm。
- 2. 做实验前选取 2 个样本,找出适合本次检测样本的稀释倍数 D (如:尿液样本可用蒸馏水稀释 100 倍)。
- 3. 所有试剂解冻至室温,在96孔板中依次加入:

是刘夕称 (I)	测定管	空白管	标准管				
は剂名称(μL)		(仅做一次)	(仅做一次)				
样本	20	-	-				
去离子水	-	20	-				
标准品	-	-	20				
试剂一	10	10	10				
去离子水	130	130	130				
混匀, 37℃避光反应 15min							
试剂二	20	20	20				
试剂三	20	20	20				
混匀,37℃避光反应 20min,于 625nm 处读取吸光值 A,							

A=A 测定-A 空白。

- 【注】1 测定管 A 值若超过 1.5, 样本可用生理盐水或去离子水进行稀释, 稀释倍数 D 代入公式。
 - 2 若 \triangle A 差值在小于 0.01,可增加样本加样量 V1(如增至 50 μ L,则水相应减少,保持总体积不变;空白管和标准管维持不变),则改变后 V1 需代入公式重新计算。

三、结果计算

1. 按液体体积计算:

尿素(mg/L)=($C_{\kappa_{\ell}} \times V_{\kappa}$)× $10^3 \times \triangle A \div (A_{\kappa_{\ell}} - A_{\varphi_0}) \div V1 \times D=30 \times \triangle A \div (A_{\kappa_{\ell}} - A_{\varphi_0}) \times D$

尿素(mmol/L)=(C $_{\text{标}\#}$ ×V $_{\text{\tiny K}}$)÷60.04 × 10^3 × \triangle A ÷ (A $_{\text{\tiny K}\#}$ -A $_{\text{\tiny P}}$) ÷ V1 × D=0.5 × \triangle A ÷ (A $_{\text{\tiny K}\#}$ -A $_{\text{\tiny P}}$) × D

尿素氮(mmol/L)=($C_{\overline{kra}} \times V_{\overline{kr}}$)÷ $60.04 \times 10^3 \times \triangle A$ ÷($A_{\overline{kra}}$ - A_{20})÷ $V1 \times 2 \times D = 1 \times \triangle A$ ÷($A_{\overline{kra}}$ - A_{20})×D

尿素氮(mg/dL)=(C $_{\bar{k}\bar{k}}$ ×V $_{\bar{k}}$)÷60.04×10²× \triangle A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{\Sigma}\bar{\Omega}}$)÷V1×2×14×D=1.4× \triangle A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{\Sigma}\bar{\Omega}}$)×D

2. 按细胞数量计算:

尿素(ng/10⁴cell)=(C $_{\text{标准}}$ ×V $_{\text{标}}$)×10⁶×△A÷(A $_{\text{标准}}$ -A $_{\text{空}\text{i}}$)÷(500×V1÷V)×D=60×△A÷(A $_{\text{标准}}$ -A $_{\text{空}\text{i}}$)×D

尿素(nmol/10⁴cell)=(C $_{krit}$ ×V $_{kr}$)÷60.04×10⁶×△A÷(A $_{krit}$ -A $_{2e}$)÷(500×V1÷V)×D=△A÷(A $_{krit}$ -A $_{2e}$

尿素氮(nmol/10⁴ cell)=(C $_{\bar{k}\pi}$ ×V $_{\bar{k}}$)÷60.04×10⁶× \triangle A÷(A $_{\bar{k}\pi}$ -A $_{\bar{\Sigma}\bar{\Omega}}$)÷(500×V1÷V)×2×D=2× \triangle A÷(A $_{\bar{k}\pi}$ -A $_{\bar{\Sigma}\bar{\Omega}}$)×D

3. 按样本质量计算:

尿素(μg/g)=(C $_{\text{\tiny Kilk}}$ × V $_{\text{\tiny Kilk}}$)×10³×△A÷(A $_{\text{\tiny Kilk}}$ -A $_{\text{\tiny Silh}}$)÷(W×V1÷V)×D=30×△A÷(A $_{\text{\tiny Kilk}}$ -A $_{\text{\tiny Silh}}$)÷W×D

尿素(μ mol/g)=($C_{\kappa / k} \times V_{\kappa}$)÷60.04×10³× \triangle A÷($A_{\kappa / k} - A_{\varphi_0}$)÷(W×V1÷V)×D=0.5× \triangle A÷($A_{\kappa / k} - A_{\varphi_0}$

尿素氮(μ mol/g)=(C $_{\kappa$ # $}$ ×V $_{\kappa}$)÷60.04×10³× \triangle A÷(A $_{\kappa$ # $}$ -A $_{\mathfrak{D}_{\dot{\mathbf{D}}}}$)÷(W×V1÷V)×2×D=1× \triangle A÷(A $_{\kappa}$ # $}$ -A $_{\mathfrak{D}}$ $_{\dot{\mathbf{D}}}$)÷W×D

C 标准----尿素标品浓度, 0.03mg/mL

V1---加入样本体积, 0.02mL

Note: For in vitro research use only, not for diagnostic or therapeutic use, This product is not a medical device. 注意:在体外研究使用,不用于诊断或治疗用途,本产品不是医疗装置。

V_标---加入标准品体积, 0.02mL W---样本取样质量, g 2---一分子尿素含有 2 个氮元素 D---稀释倍数,未稀释即为 1 V---提取液体积,1mL 14----氮元素分子量 60.04---尿素分子量 500---细胞数量,万

注意事项:

- 1. 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品。
- 2. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

有效期:

-20℃保存六个月。

Note: For in vitro research use only, not for diagnostic or therapeutic use, This product is not a medical device. 注意:在体外研究使用,不用于诊断或治疗用途,本产品不是医疗装置。

电话:400-600-4213 邮箱:techserv@labgic.com